Numerical Solution of Discontinuous Differential Systems:
Approaching the Discontinuity Surface from One Side

Luca Diecia, and Luciano Lopezb

aSchool of Mathematics, Georgia Tech Institute, Atlanta, USA
bDepartment of Mathematics, University of Bari, Italy
dieci@math.gatech.edu, lopezl@dm.uniba.it

Key words: Discontinuous ODEs, Filippov theory, Runge-Kutta methods.

We present a numerical approach to treat discontinuous differential systems of ODEs of the type:
\[x' = f_1(x) \text{ when } h(x) < 0 \quad \text{and} \quad x' = f_2(x) \text{ when } h(x) > 0, \]
where \(\Sigma := \{ x : h(x) = 0 \} \) is a smooth co-dimension one discontinuity surface, and with \(f_1 \neq f_2 \) for \(x \in \Sigma \). Often, \(f_1 \) and \(f_2 \) are defined on the whole space, but there are applications where \(f_1 \) is not defined above \(\Sigma \) and \(f_2 \) is not defined below \(\Sigma \). For this reason, we consider numerical schemes –based on a class of explicit Runge-Kutta methods– which do not evaluate \(f_1 \) above \(\Sigma \) (respectively, \(f_2 \) below \(\Sigma \)).