Numerical Solution of Discontinuous Differential Systems: Approaching the Discontinuity Surface from One Side

Luca Dieci^a, and Luciano Lopez^b

^aSchool of Mathematics, Georgia Tech Institute, Atlanta, USA

^bDepartment of Mathematics, University of Bari, Italy

dieci@math.gatech.edu , lopezl@dm.uniba.it

Key words: Discontinuous ODEs, Filippov theory, Runge-Kutta methods.

We present a numerical approach to treat discontinuous differential systems of ODEs of the type: $x' = f_1(x)$ when h(x) < 0 and $x' = f_2(x)$ when h(x) > 0, where $\Sigma := \{x : h(x) = 0\}$ is a smooth co-dimension one discontinuity surface, and with $f_1 \neq f_2$ for $x \in \Sigma$. Often, f_1 and f_2 are defined on the whole space, but there are applications where f_1 is not defined above Σ and f_2 is not defined below Σ . For this reason, we consider numerical schemes –based on a class of explicit Runge-Kutta methods— which do not evaluate f_1 above Σ (respectively, f_2 below Σ).