Galerkin and Runge–Kutta methods:
Unified formulation and a posteriori error analysis

Georgios Akrivisa, Charalambos Makridakisb,
and Ricardo H. Nochettoc

aDepartment of Computer Science, University of Ioannina,
451 10 Ioannina, Greece
bDepartment of Applied Mathematics, University of Crete,
714 09 Heraklion, Crete, Greece
cDepartment of Mathematics, University of Maryland,
College Park, MD 20742, USA

akrivis@cs.uoi.gr, makr@tem.uoc.gr, rhn@math.umd.edu

\textit{AMS subject classification:} 65M15, 65M50

\textit{Key words:} Parabolic equations, single-step methods, a posteriori error analysis, superconvergence.

We consider the time discretization of initial value problems for linear parabolic equations in an abstract Hilbert space setting,

\begin{equation}
\begin{aligned}
& u'(t) + Au(t) = f(t), & 0 < t < T, \\
& u(0) = u^0,
\end{aligned}
\end{equation}

by single-step schemes.

We cast Galerkin and Runge–Kutta methods into a unified formulation; the approximate solutions U are piecewise polynomials in partitions of $[0, T]$. The residual R of U, i.e., the amount by which U misses being exact solution, is in general of suboptimal order. Therefore, the straightforward approach leads to suboptimal a posteriori error estimates.

Using suitable reconstructions \hat{U} of U, we derive optimal order, residual based a posteriori error estimates.

These methods yield, under appropriate compatibility conditions, nodal approximations of order higher than the global order. We derive analogous a posteriori nodal superconvergence estimates.